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1. INTRODUCTION

That the maximum likelihood estimate (m.l.e.) is second order

efficient has been proved under various conditions by Ghosh and

Subramanyam (1974), Efron (1975), Ghosh, Sinha and Subramanyam

(1979), Ghosh. Sinha and Wieand (1980), Pfanzagl and Wefelmeyer

(1976, 1979) and Takechi and Akahira (1978). In the last three

references this property is referred to as third order efficiency;

this use of the term should not be confused with ours, which will

be formally introduced in the next section. The purpose of this

note is to produce an example of what Efron (1975) calls curved

exponentials where the efficiency of the mle fails in the class

of Fisher consistent estimates when we take into consideration

third order terms, (namely terms of 0(n-3 )), in the expression

for the mean square of the error of estimates concerned or terms

of order 0(n- ) in the expression for the loss of informationl,

vide (3.1) and (4.1). On the whole we have conformed to the

notations and conventions of Ghosh and Subramanyam (1974) and

our definition of third order efficiency is in analogy with that

of second order efficiency presented there, but this note can be

read independently of it. All our computations are a straight-

forward application of the so called delta method and may be

justified as in Ghosh and Subramanyam (1974) or Ghosh, Sinha and

Subramanyam (1979); no further reference will be made to this

aspect.

In Section 2 the counterexample is introduced and the mle

expanded. Lack of third order efficiency is established in Sec-
3tions 3 and 4.
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2. THE COUNTEREXAMPLE

Consider a one-parameter trivariate density

x 2
f(xlvx2,x3 ) exp{- i(xl-&) - (x2-e2 

2  3

22 2

{Ax x + Bx +2C XlX2x 3 } (2.1)

2 4 -1 -3/2{A(l+e2) (1+e )+B}I 12r}-

- <x i< , i =1,2,3

0- <e < 0

A>O, B>O, AB>C
2

with A,B,C independent of e.

Let {X li,X 2iX3i} be a i.i.d copies of XI,X 2 ,X3. Then the

likelihood L(e) is the product of n terms exemplified by (2.1).

Hence the derivatives of log likelihood are

Z 1d logL 2()+20(2_2 ) A(2e+4e3 +605 )
n = n d e 1-2 (A+B)+A 2+Ae 4+Ae6

* 1 d2 logL 2-+ -2 A(2+1202 +30e4

wn = dO2  =)(A+B)+Ae 2 +Ae4 +Ae6

+ A2 (26+4eB+665)2

{(A+B)+A( 2+4 +e6 )}
2

3 3d __ _ _ _
2  2 4 3 5

V 1 d3 1oL =12e- A24e+120e )  + A2(2+126,2+3084)(2e+40 +6e
(A+B)+A(2 +4+6) {A+B)+A(e +0+0 6)}

+ 2A 2 (20+4e3+6e5 )(2+12 2+30 ) 2A 3(28+4e3 +605)3

{(A+B)+A(2 +4 +6 )} 2+ 4 +6 )3

_1 d4 loL n(e) say.Un =n d4 "
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Clearly
I 2  2o 4)- . .

(e) E( n d2 lo =-2 E (X 2 6) +4e2 + A(2+122 +3064
1(0n de 2- 9 2O (A+B)+A(e 2+64 +66 )

A 2(2e+46 +66 )

{(A+B)+A( 6 4+66 ) "

To compute I(0) we need

E( 2 2Ae2 (l+e 2 )

E 06(X 2 -0 e 2 4 6______

(A+B)+A(2 +04+6 )

Let W =W + I(0) so that E W =0.L n Wn 0-,

We shall now get an expansion of the mle 3. Clearly

0 =Z +(0 0)(W-I(e)) +( e) 2 V*+ 6)3 U+ smaller terms.n Z n  n 6(- Ur mllrtrs

So writing,

A1 A2  A3e- a =- + - + -- + (2.2)
V- n n3 ....

and substituting in the previous equation we get

A1
z - I(e) = 0n

A A A2A1 A2 1 *- W _I(e) + V =0
V' n n n n

2 A2 I A 2 V* 1A3 *
n n n 1 2 1(0)- n-nV v- Un

From these we determine AI,A 2,A3 and substitute in (2.2) yielding
z zW Z2 V:Z* 2 *n W ZZn + ~ n+ }+[ +w zv + }V

1(0 *2Q z 3

{Zn 1Wn  ZV Z Zn V Zn n{~~~~ n 3e)n

+ i n+ (2.3)

: 1.
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Let*

z nwn z nVn
Q2(6) = 2( + 1 30 (2.4)

zW z 2 V~ w z * 3

Q ~ 8 (e) nI~T n (8 n I~"n(8n) (2.5)

So

6 - n+ Q M + QM+0o (n (2.68-0= 2.) Q3( p(26

3. LACK OF THIRD ORDER EFFICIENCY IN THE SENSE OF RAO

refine

T' + 6*{R 3  r 3(

where

e= E ( 3 ),

and 6* is a constant to be suitably chosen. Then like 8,T' is

Fisher consistent. Let

E i (R(3 )/n 2 + -2

Then T' adjusted to have same bias as the nile (up to o(n )) is

T=8+ 6'*{X3 -i3(8) - T' )/n2].1

We shall show

E .(- 2 > T6 2 (3.1)-8) 6=0(-
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if we neglect terms of order o(n- 3). Of course a similar inequality
2 2

E6=0 (8'-) > E= 0 (T'-) holds if instead of adjusting T' we
I -2

adjust 0 to 0' to ensure same bias as T' up to o(n ). We shall

refer to (3.1) as lack of third order efficiency in the sense

of Rao.

For = 0,

Z=Xl W =2 2  V =0,n n 2 2

U n  -12(2A 2+4AB+B 2)/(A+B)2  (3.2)

1(0) =(3A+B)/(A+B),

173(0 = 0, 7T(o)= 0, E .0(X 3) =0.

To calculate (M), we use

3 3 2*{X3 -r 3()}
3  [{X 3 -IT3 (

6 )} -3(X-r 3 () ( -) T(e)

+ 3(R-(e)) ( 2( 2 3 (e-e)3(-roe) 3 +smaller terms3 3.3

which, using (3.2), gives for 8 0

[R- T }3 R3 +0(n-2)
{X3 - 3 (

e )  3 p

and so (o) = 0.

Observe

2 2 2 1* 3 2]2E 0 =0(T-6) =E6=0 (6-6) +6* E = 0 E{X 3-()} 3- (T')/n J

+26* Eo(e-e)((x3- 3 -( )/n2 }

(3.3)
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We first note that the second term on the RHS of (3.3) is (using

(3.2))

E6 0 o(X6) + o(n
- )

15 (A+3B,3 + o(n 3  (3.4)

3 )+n

For the third term on the RHS of (3.3), we have,

E Z n  3 ,( '-

E6=O(i +Q 2 +Q 3 ){3 - 3 ( e))3 n 2-}+o(n - 3 ) by (2.6)
n

E e=o(Q2+Q3 ){(x3-T 3 (;))
3 - (T')/n 2 1 +o(n - 3 )

_1 d Ee .. }=~ -3))
(since EZ{ .. } - E . o(n

e n n de a
z W z W U *(O)Z 3

n n-+ n)() + o(n- )= E 0=0(I2(6) 1(3)M 614(0) W 3) ~

IXX +~~ U, 0)

xE 112 41 R2 n 1 o 3 o(n-3 (3.5)
- =0 1 2(0) 1 3 (0 61 4(0) +on3

We observe, after some straightforward calculations,

2 3 -3
e=0  1 2 3

Ee= 0 1X3 = o(n-3) (3.6)

S R3 A+3B 6C 3
e=0X12 3 = (A+B)2  n-+o(n)

- . .. j ,. , ... : .. . . .
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Using (3.4), (3.5) and (3.6) we get from (3.3),

2 " 2~ 6*2 A+3B.3~ 46* A+3B 6C

Ee 0 (T-) 0 (;_)+ 6C + o(n -3).
S= I 2(0) (A+B) 2  n

-3
Recall that I(0) =(3A+B)/(A+B) so that the coefficient of n

above is

156* (A+3B.)3 +46* (A+3B) 6C
A+B (3A+B)2

which can be made < 0 if, say,

A = B = 1, 6* < 0 and 206+C > 0.

This proves (3.1).

4. LACK OF THIRD ORDER EFFICIENCY IN THE SENSE OF FISHER-RAO

The third order loss of information for 6 may be defined

as follows. Let

8 = d log L ;_e _ _y( )2 ^_e)3
Vn de a n - 6nOe y(- n(e-

Let E3 (6,e) be the variance of above expanded up to o(n) and

then minimized with respect to the coefficients ,y,6. Of course

a does not play any role in this. The values of B,y,6 obtained

in this way will depend on n and will be denoted as n etc.

Similarly we define

v T(6) =d logL _ a,)n_- n(T-6) - y' n(T-6) 2_-6n(T-e) 3

n d

and then E3 (T,e) as above. We shall show

3~
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E3 (e,e) >E3 (T,e) for e=0 (4.1)

We sketch a proof.

Using (2.6) and (3.1) one can show that for the present pur-

pose of evaluating E3 up to o(n- ), we may take

n I v)+ -n n

N= +- 1n 
+ 'Y2 (4.2)

n ~o -7n n

+- 1

n 0 vn'

(where Y0 is in fact the coefficient X arising from considerations

of second order efficiency, vide Ghosh and Subramanyam (1974)).

The following facts will be needed:

-2 -3 -3Cov=o[X X2,X 3 :o(n - )

-2- -3 -2- -3 3 3
CoveOCXlX2 ,X :E = [X IX2X3  =Cov=oEI 2 ,X iX3 3 =o(n-)

= 3 -31 -3 e=- 1 3 3

Cov EoX3,X3 ] =EEXX 3] Cove o5t2,- R 3 =o(n
S e=o 1 3 e XIX3  o(n - )

Coveo -3 -2 3 ] -E CoRXX3 ] =Cov ~[X1,X 31 =o(n- 3 )  (4.3)

RWp A R 3] = o(n-3Cov=o[X
1  2Y 3

Cov ER ,R3 3 = o(n -)
=02 3 i

-2 3 -3
CoV0= 0 EX2 ,X3 ] = o(n )

-- 3Cov 5=0 (XIX 3 ) = 0

Now at e = 0 (with A=B =1 and hence I= 2)

.... .. , .* . .. .. . , - .
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-1l 2R l- 2  4R, 1

Hence

x 1 x 1 x2  nyo Xl
V (=0)=-Dtv"n - , vn I + 2n -I + 1

-3 -2-2

x x 1 x2 x XX-2 -- n 3 1  + 4n --- + n Un*- + /~ny T + 4n,( + n O -

9[2 11 21 n 63 1 12 1 0 1

-2 *-3 R2 -2-

S4X1X2  2n3 -
2n (+ + fl 1 n - 1 + 6n S XI2 +smaller terms

2 4- n-~ -f- +4..,

1 614  1 3 13 (4.4)

and

V (e=O) = V (6=0) -6*f{nl R3 + smaller terms (4.5)
n n 3'

Using (4.3), (4.4) and (4.5) we can prove

Var,= (V (9=0) =E3 0) + [Var=0(nI -3 2 3 -1+o(n
0~ n e) 3(ee)[a 1 3) e5nCv=0(X1 2'"3

2 12 6)2 +246*C -1
-E 3 (, 8=0)+ 2 0(.) + n + o(n ) (4.6)'n n

The sum of the last two terms on the RHS of (4.6) can be made < 0

by taking 6 < 0, 206* + C > 0. Now (4.1) follows from (4.6).

5. CONCLUDING REMARKS

A close inspection of the proof will reveal that the reason

for lick of third order efficiency is due to the non-zero co-

variance between (Q2 +Q3 ) and (T-6). This covariance is likely

2+Q3
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to be non-zero in most cases but except in specially constructed

simple examples like the present one checking this would involve

prohibitive calculations.

It would be interesting to show that not only the mle but

no other estimate can possess third order efficiency.

~i
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